

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3 [°] -2 ^{°)} x4 [°]	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div ($	-2) ⁷	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	ⁱ⁻ⁿ where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 2 ^{6?}				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3 [°] -2 ^{°)} x4 [°]	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div ($	-2) ⁷	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	ⁱ⁻ⁿ where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 2 ^{6?}				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (: $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >			
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 26?				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >			
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 26?				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?						
a) 2 [°] +3 [°] +4 [°]	a) $2^{\circ} + 3^{\circ} + 4^{\circ}$ b) $2^{\circ} x 3^{\circ} x 4^{\circ}$		d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)			
16 .Square of $\left(\frac{-2}{3}\right)$ is:						
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$			
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$				
C) $-\frac{5^4}{4^4}$ d) $\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$						
18. Which of the following	is not equal to 1?					
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$			
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:			
a) 82903	b) 829.03	c) 82.903	d) 8.2903			
20. In standard form 72 c	rore is written as :					
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷			
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.			
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$			
21. Which of the following	is not true?					
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²			
22. Which power of 8 is e	equal to 26?					
a) 3	b) 2	c) 1	d) 4			
Next Generation School						

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ lic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?							
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)				
16 .Square of $\left(\frac{-2}{3}\right)$ is:							
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$				
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >					
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$					
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$				
18. Which of the following	is not equal to 1?						
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$				
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:				
a) 82903	b) 829.03	c) 82.903	d) 8.2903				
20. In standard form 72 c	rore is written as :						
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷				
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.				
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$				
21. Which of the following	is not true?						
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²				
22. Which power of 8 is e	equal to 26?						
a) 3	b) 2	c) 1	d) 4				
Gy and	t Gener	alion	School				

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?							
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)				
16 .Square of $\left(\frac{-2}{3}\right)$ is:							
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$				
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >					
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$					
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$				
18. Which of the following	is not equal to 1?						
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$				
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:				
a) 82903	b) 829.03	c) 82.903	d) 8.2903				
20. In standard form 72 c	rore is written as :						
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷				
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.				
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$				
21. Which of the following	is not true?						
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²				
22. Which power of 8 is e	equal to 26?						
a) 3	b) 2	c) 1	d) 4				
Gy and	t Gener	alion	School				

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 XX5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >			
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 26?				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 XX5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3 [°] -2 ^{°)} x4 [°]	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >			
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 26?				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 XX5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?						
a) 2 [°] +3 [°] +4 [°]	a) $2^{\circ} + 3^{\circ} + 4^{\circ}$ b) $2^{\circ} x 3^{\circ} x 4^{\circ}$		d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)			
16 .Square of $\left(\frac{-2}{3}\right)$ is:						
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$			
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$				
C) $-\frac{5^4}{4^4}$ d) $\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$						
18. Which of the following	is not equal to 1?					
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$			
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:			
a) 82903	b) 829.03	c) 82.903	d) 8.2903			
20. In standard form 72 c	rore is written as :					
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷			
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.			
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$			
21. Which of the following	is not true?					
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²			
22. Which power of 8 is e	equal to 26?					
a) 3	b) 2	c) 1	d) 4			
Next Generation School						

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 XX5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?							
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)				
16 .Square of $\left(\frac{-2}{3}\right)$ is:							
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$				
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >					
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$					
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$				
18. Which of the following	is not equal to 1?						
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$				
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:				
a) 82903	b) 829.03	c) 82.903	d) 8.2903				
20. In standard form 72 c	rore is written as :						
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷				
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.				
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$				
21. Which of the following	is not true?						
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²				
22. Which power of 8 is e	equal to 26?						
a) 3	b) 2	c) 1	d) 4				
Gy and	t Gener	alion	School				

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (: $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?							
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)				
16 .Square of $\left(\frac{-2}{3}\right)$ is:							
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$				
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >					
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$					
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$				
18. Which of the following	is not equal to 1?						
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$				
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:				
a) 82903	b) 829.03	c) 82.903	d) 8.2903				
20. In standard form 72 c	rore is written as :						
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷				
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.				
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$				
21. Which of the following	is not true?						
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²				
22. Which power of 8 is e	equal to 26?						
a) 3	b) 2	c) 1	d) 4				
Gy and	t Gener	alion	School				

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (: $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?				
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)	
16 .Square of $\left(\frac{-2}{3}\right)$ is:				
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$	
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >		
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$		
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$	
18. Which of the following	is not equal to 1?			
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$	
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:	
a) 82903	b) 829.03	c) 82.903	d) 8.2903	
20. In standard form 72 c	rore is written as :			
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷	
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.	
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$	
21. Which of the following	is not true?			
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²	
22. Which power of 8 is e	equal to 26?			
a) 3	b) 2	c) 1	d) 4	
Gy and	t Gener	alion	School	

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (: $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3 [°] -2 ^{°)} x4 [°]	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div ($	-2) ⁷	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	ⁱ⁻ⁿ where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 2 ^{6?}				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (: $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3 [°] -2 ^{°)} x4 [°]	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div ($	-2) ⁷	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	ⁱ⁻ⁿ where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 2 ^{6?}				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (: $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?							
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)				
16 .Square of $\left(\frac{-2}{3}\right)$ is:							
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$				
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >					
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$					
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$				
18. Which of the following	is not equal to 1?						
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$				
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:				
a) 82903	b) 829.03	c) 82.903	d) 8.2903				
20. In standard form 72 c	rore is written as :						
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷				
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.				
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$				
21. Which of the following	is not true?						
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²				
22. Which power of 8 is e	equal to 26?						
a) 3	b) 2	c) 1	d) 4				
Gy and	t Gener	alion	School				

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?							
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)				
16 .Square of $\left(\frac{-2}{3}\right)$ is:							
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$				
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >					
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$					
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$				
18. Which of the following	is not equal to 1?						
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$				
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:				
a) 82903	b) 829.03	c) 82.903	d) 8.2903				
20. In standard form 72 c	rore is written as :						
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷				
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.				
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$				
21. Which of the following	is not true?						
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²				
22. Which power of 8 is e	equal to 26?						
a) 3	b) 2	c) 1	d) 4				
Gy and	t Gener	alion	School				

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (: $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?				
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)	
16 .Square of $\left(\frac{-2}{3}\right)$ is:				
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$	
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >		
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$		
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$	
18. Which of the following	is not equal to 1?			
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$	
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:	
a) 82903	b) 829.03	c) 82.903	d) 8.2903	
20. In standard form 72 c	rore is written as :			
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷	
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.	
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$	
21. Which of the following	is not true?			
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²	
22. Which power of 8 is e	equal to 26?			
a) 3	b) 2	c) 1	d) 4	
Gy and	t Gener	alion	School	

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (: $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3 [°] -2 ^{°)} x4 [°]	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div ($	-2) ⁷	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	ⁱ⁻ⁿ where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 2 ^{6?}				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3 [°] -2 ^{°)} x4 [°]	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div ($	-2) ⁷	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	ⁱ⁻ⁿ where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 2 ^{6?}				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (: $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >			
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 26?				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x2x2x 2x2x2x2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3°-2°) x4°	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >			
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 26?				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?						
a) 2 [°] +3 [°] +4 [°]	a) $2^{\circ} + 3^{\circ} + 4^{\circ}$ b) $2^{\circ} x 3^{\circ} x 4^{\circ}$		d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)			
16 .Square of $\left(\frac{-2}{3}\right)$ is:						
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$			
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?	Dic >				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$				
C) $-\frac{5^4}{4^4}$ d) $\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$						
18. Which of the following	is not equal to 1?					
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div (-2)^{4}$	$(-2)^{7}$	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$			
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:			
a) 82903	b) 829.03	c) 82.903	d) 8.2903			
20. In standard form 72 c	rore is written as :					
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷			
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	^{I-n} where m > n is equa	II to.			
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$			
21. Which of the following	is not true?					
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²			
22. Which power of 8 is e	equal to 26?					
a) 3	b) 2	c) 1	d) 4			
Next Generation School						

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ lic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3 [°] -2 ^{°)} x4 [°]	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div ($	-2) ⁷	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	ⁱ⁻ⁿ where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 2 ^{6?}				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^{n} X5+5X5 X 5^{n}}{3 X 5^{n} X55X5+2X5X5X 5^{n}}$$
$$= \frac{5X5 X 5^{n} X2+5X5 X 5^{n}}{5X 5 X 5^{n} X3+5X5X5^{n} X 2}$$
$$= \frac{5X5 X 5^{n} (2+1)}{5X 5 X 5^{n} (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} \div x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = -5 \times 1$$

$$\Rightarrow -15x = -5$$

$$\Rightarrow x = -\frac{5}{-15}$$

$$\Rightarrow x = -\frac{1}{-3}$$

$$\Rightarrow x = \frac{1}{3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$

$$= \left(\frac{1}{6} - \frac{1}{8}\right)^{-1} + \left(\frac{1}{2} - \frac{1}{3}\right)^{-1}$$

$$= 24 + 6 = 30$$
b) $\left\{ b^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$

$$= \left(\frac{1+4}{6}\right)^{-1} = \left(\frac{5}{6}\right)^{-1}$$

$$= \frac{1}{5}$$

Stead: Generation School

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

 $[\because(a \times b)^m = a^m \times b^m]$

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^5 \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School

Grade VII

Lesson :13 Exponents and Powers

1. 72 can be expressed as : a) $2^3 \times 3^2$ b) 2² x3² c) 2³x3³ d) $2^2 x 3^2$ 2. Value of (-2)³ x (-10)³ is : c) -8,000 a) 8,000 b) 9,000 d) 12,000 3. Which of the following is the exponential form of '243'? b)5³ c) 3⁵ a) 3² b)2³ 4. Which of the following is the simplest form of $(-3)^2 \times (-4)^3$? a) 576 b)-576 c) -64 d) -36 5. Which of the following is the simplest form of $[(2)^{20} \div (2)^{18}] \ge 2^3$? c) -32 a) 8 b) -8 d) 32 6. Which of the following is the standard form of 12700? b)12.7 x 10⁴ c)127 x 10² a)1.27 x 10⁴ d)1270 x 10 7. Which of following is the simplest form of $9 \times 10^3 + 2 \times 10^2$? b)9002 a) 9000 c)9200 d)209 8. Which of the following is the value of $(-1)^{100} \div (-1) - 1^{100}$? a) 20000 b)-1 c) 1 d) 2 9. Out of the following the number which is not equal to $\frac{-8}{24}$ is : a) $-\left(\frac{2}{3}\right)^{3}$ $b.\left(\frac{-2}{3}\right)^3$ C) $-\left(\frac{-2}{3}\right)^3$ ^{d)} $\left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right) \times \left(\frac{-2}{3}\right)$ 10. $(-7)^5 \times (-7)^3$ is equal to: a) (-7)⁸ b) (-7) ⁸ c) (-7)¹⁵ d) (-7)² 11. For any two non-zero integers x any y, $x^3 \div y^3$ is equal to: a) $\frac{x^0}{v}$ d) $\frac{x^9}{y}$ $c)\frac{x^{6}}{v}$ b) $\left(\frac{x}{y}\right)^3$ 12. For a non-zero rational number $x_1x^8 \div x^2$ is equal to a) x⁴ b)x⁶ c) x¹⁰ d)x¹⁶ 13.a^m x aⁿ is equal to : a) (*a*²)^{mn} b) a ^{m- n} c) a ^{m+ n} d) a ^{mn} 14. If $2^{1998} - 2^{1997} - 2^{1996} + 2^{1995} = k.2^{1995}$, then the value of k is : d) 4 a. 1 b) 2 c)3

III. Multiple choice questions

Created by Pinkz

15. Which of the following is equal to 1?					
a) 2 [°] +3 [°] +4 [°]	b) 2 [°] x3 [°] x4 [°]	c) (3 [°] -2 ^{°)} x4 [°]	d)(3 ⁰ -2 ⁰) x (3 ⁰ +2 ⁰)		
16 .Square of $\left(\frac{-2}{3}\right)$ is:					
a) $\left(\frac{-2}{3}\right)$	$b)_{\frac{2}{3}}^{\frac{2}{3}}$	C) $\frac{-4}{9}$	d) $\frac{4}{9}$		
17. Which of the following	is not equal to $\left(\frac{-5}{4}\right)^4$?				
a) $\frac{(-5)^4}{4^4}$		b) $\frac{5^4}{(-4)^4}$			
C) $-\frac{5^4}{4^4}$		$d)\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right) = 0$	$\left(-\frac{5}{4}\right) \times \left(-\frac{5}{4}\right)$		
18. Which of the following	is not equal to 1?				
a) $\frac{2^2 X 3^2}{4 x 18}$	b) $[(-2)^{3}X(-2)^{4}] \div ($	-2) ⁷	C) $\frac{3^{0} \times 5^{3}}{5 \times 25}$ d) $\frac{2^{4}}{(7^{0}+3^{0})3}$		
19. In standard form, the	number 829030000 i	s written as K x 10 ⁸ v	vhere K is equal to:		
a) 82903	b) 829.03	c) 82.903	d) 8.2903		
20. In standard form 72 c	rore is written as :				
a) 72 x 10 ⁷	b)72 x 10 ⁸	c)7.2 x 10 ⁸	d)7.2 x 10 ⁷		
22. For non- zero numbers	s a and b $\left(\frac{a}{b}\right)^{m} \div \left(\frac{a}{b}\right)^{m}$	ⁱ⁻ⁿ where m > n is equa	II to.		
a) $\left(\frac{a}{b}\right)^{mn}$	b) $\left(\frac{a}{b}\right)^{m+n}$	C) $\left(\frac{a}{b}\right)^{m-n}$	d) $\left[\left(\frac{a}{b}\right)^{m}\right]^{n}$		
21. Which of the following	is not true?				
a) 3 ² > 2 ³	b) $4^3 = 2^6$	c) $3^3 = 9$	d)2 ⁵ > 5 ²		
22. Which power of 8 is e	equal to 2 ^{6?}				
a) 3	b) 2	c) 1	d) 4		
Next Generation School					

Hints / Solutions

I. Fill in the Blanks

- 1. If $a^x = 1$, then the value of X is; where $a \neq 1$ $\therefore a^0 = 1$ *So*, $a^x = 1$, then the value of x is 0.
- 2. $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32} = \dots$ Given $(6^4 \div 6^3) \ge (1)^{92} \ge 2^{36} \div 2^{32}$ $\therefore 6^4 \div 6^3 = 6^{4-3} = 6^1$ [$\because a^m + a^n = a^{m-n}$] $(1)^{92} = 1$. [$\because (a)^{\text{even integer}} = 1$] $2^{36} \div 2^{32} = 2^4 = 16[\because a^m + a^n = a^{m-n}]$ $\therefore (6)^1 \ge (1)^{92} \ge 2^4 = 6 \ge 1 \ge 12^{36} \div 2^{32} = 96$.
- 3. $\left(\frac{11}{15}\right)^4 x \ (\dots)^5 \left(\frac{11}{15}\right)^9 \text{NCERT}$ $\therefore a^m + a^n = a^{m+n}$ $\left(\frac{11}{15}\right)^4 x \left(\frac{11}{15}\right)^{5} = \left(\frac{11}{15}\right)^{4+5} = \left(\frac{11}{15}\right)^9$

4.
$$\left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^{\dots} = \left(\frac{-1}{4}\right)^{11} \therefore a^m \times a^n = a^{m+n} \therefore \left(\frac{-1}{4}\right)^3 \times \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{-1}{4}\right)^{11} \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{\left(\frac{-1}{4}\right)^{11}}{\left(\frac{-1}{4}\right)^3}\right) \Rightarrow \left(\frac{-1}{4}\right)^x = \left(\frac{1}{4}\right)^{11-3} = \left(\frac{-1}{4}\right)^x \Rightarrow x = 8$$

Next Generation School

5. 432 = $2^4 x 3^{-...}$

 $::432=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 = 2^4 \times 3^3$

1. One million = 10^7

I. True or False

- 2. One hour = 60^{2} seconds
- 3. $1^{\circ} \times 0^{1} = 1$
- 4. (-3) ⁴ = -12
- 5. 3⁴> 4 ³
- $6. \left(\frac{-3}{5}\right)^{100} = \frac{(-3)^{100}}{(-5)^{100}}$
- 7. (10 + 10)¹⁰ =10¹⁰ + 10¹⁰
- 8. $x^{0}xx^{0} = x^{0} \div x^{0}$ is true for all non-zero values of x.
- 9. In the standard form, a large number can expressed a decimal number between 0 and 1, multiplied by a power of 10.
- 10. 4² is greater than 2⁴.
- 11. $x^{m} + x^{m} = x^{2m}$, where x is a non-zero rational number and m is a positive integer.
- 12. $x^{m} + y^{m} = (x X y)^{2m}$, where x and y are non-zero rational numbers and m is a positive integer.
- 13. $x^{m} \div y^{m} = (x \div y)^{m}$, where x and y are rational non-zero numbers is m positive integer.
- 14. $x^m \ge x^{n-x}$, where x is a non-zero rational number and m, n are a positive integer.
- 15. 4⁹ is greater than 16³.
- 16. $\left(\frac{2}{5}\right)^3 \div \left(\frac{2}{5}\right)^3 = 1$
- $17.\left(\frac{4}{3}\right)^5 + \left(\frac{5}{7}\right)^3 = \left(\frac{4}{3} + \frac{5}{7}\right)^3$
- $18.\left(\frac{5}{8}\right)^9 \div \left(\frac{5}{8}\right)^4 = \left(\frac{5}{8}\right)^4$
- 19. $\left(\frac{7}{3}\right)^2 x \left(\frac{7}{3}\right)^5 = \left(\frac{7}{3}\right)^{10}$
- 20. $5^{\circ} \times 25^{\circ} \times 125^{\circ} = (5^{\circ})^{\circ} 600060 = 6 \times 105 + 6 \times 10$
- 21. 876543 = 8 x 10⁵ + 7x 10⁴ + 6 x 10³ + 5 x 10² + 4 x 10¹ + 3 x 10⁰
- 22. $600060 = 6 \times 10^5 + 6 \times 10^2$
- 23. 4 x 10⁵ + 3 x 10⁴ + 2 x 10³ + 1 x 10⁰ = 432010
- 24. 8 x 10^6 + 2 x 10^4 +5 x 10^2 + 9 x 10^0 = 8020509
- 25. 4⁰ + 5⁰ + 6⁰ = (4 + 5 + 6)⁰

	() Y								
1. False	2. True	3. False	4. False	5. True	6. True	7. False	8. True	9. True	10 False
11.False	12.False	13.True	14.True	15.True	16.False	17.False	18.False	19.False	20. True
21. True	22.False	23.False	24.True	25.False					

I. Very Short Answer Questions

1. What is the value of $\left(\frac{3}{4}\right)^{0}$?

1

- 2. What is the value of $x^a \times x^b$? x^{a+b}
- 3. Solve $\left(\frac{6}{7}\right)^5 \div \left(\frac{6}{7}\right)^3$ $\left(\frac{6}{7}\right)^{5-3} = \left(\frac{6}{7}\right)^2 = \frac{36}{49}$
- 4. Solve $\frac{x^3 \times x^5}{x^2}$ $x^{3+5-2} = x^6$.
- Calculate (2³)⁵
 2¹⁵

II. Very Short Answer Questions

1. Find the value of 5^4 ?.

 $5^4 = 5 \times 5 \times 5 \times 5 \times 5 = 625$

2. Express in exponential form

 $a x a x a x c x c x c x c x d = a^3 x c^4 x d$

3. Express 729 using exponential notation.

We have, $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^6$

 \div The exponential power of 729 is $\mathbf{3^6}$

4. Identify the greater number 2^8 or 8^2

We have, $2^8 = 2 \times 2 = 256$ and $8^2 = 8 \times 8 = 64$ Since, 256 > 64 i.e., $2^8 > 8^2$

5. Express 540 as product of powers of their prime numbers.

We have = 2×270 = $2 \times 2 = 135 = 2 \times 2 \times 3 \times 45$ = $2 \times 2 \times 3 \times 3 \times 15$ = $2 \times 2 \times 3 \times 3 \times 5$ 540 = $2^2 \times 3^3 \times 5$.

6. Simplify : $(-3)^2 \times (-5)^2$.

We have (-3)² = (-3) x (-3) = 9

(-5)² = (-5) x (-5) = 25

 \therefore (-3)² x (-5)² = 9 x 25 = 225.

7. Using law of exponents, simply and write in exponential form : $2^5 \times 5^5$

We have $2^5 \times 5^5 = (2 \times 5)^5 = 10^5$ (... $a^m \times b^m = (ab)^m$)

Thus, $2^5 \times 5^5 = 10^5$

8. Simplify and write in exponential form.

$$\left(\frac{a^5}{a^3}\right) \times a^8$$
We have $\left(\frac{a^5}{a^3}\right) \times a^8 = (a^{5-3}) \times a^8 \left[\therefore \frac{a^m}{a^n} = a^{m-n} \right]$

$$= a^2 \times a^8 \qquad (\therefore a^m \times a^n = a^{m+n})$$

$$= a^{2+8} = a^{10}$$

9. Express in standard form :

3,18,65,00,000

we have $3,18,65,00,000 = 3.186500000 \times 10^9 = 3.1865 \times 10^9$

10. Find the number from exponential form

$$9 \times 10^{5} + 2 \times 10^{2} + 3 \times 10^{1}$$

= 9 × 100000 + 2 × 100 + 3 × 10
900000 + 200 + 30 = 9,00,230.

2.
$$[(2+1)^{-2} + (5+1)^{-1}]^{2} \times (\frac{5}{8})^{-1}$$

 $= (\frac{1}{2} + \frac{1}{3})^{2} \times (\frac{8}{-5})^{-1}$
 $= (\frac{1}{2} \times 5)^{2} \times (\frac{2 \times 2 \times 2}{-5})^{-1}$
 $= \frac{1}{2^{2}} \times 5^{2} \times \frac{2^{3}}{-5}$
 $= 2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 2^{3}}$
 $= -2^{2^{2} \times 5^{-1}}$
 $= -2 \times 5$
 $= -10.$
3. Find the values of n, when:
a) $5^{2n} \times 5^{3} = 5^{9}$ b) $8 \times 2^{n^{2}} = 32$
 $a) \Rightarrow 5^{2n^{3}} = 5^{9}$
As base 5 is same on both sides.
 $\therefore 2n + 3 = 9$
 $\Rightarrow 2n = 6$
Thus, $n = \frac{6}{2} = 3$.
b) $\Rightarrow 2x 2 x2 x2^{2n^{2}}$
 $= 2x^{2} x2x2x2x2$
 $2^{3} x2^{n^{2}} = 2^{5}$
As base is same on both sides.
 $\therefore n + 5 = 5$
 $\Rightarrow n = 5 - 5 = 0$
4. Simplify :
 $\frac{2X \times 5^{4} \times 5^{4} \times 5^{5} \times 5^{8}}{3 \times 5^{44} + 100 \times 5^{8+1}}$

$$= \frac{2X5 X 5^n X5 + 5x5 x 5^n}{3 X 5^n X5 + 5x5 X 5^n}$$
$$= \frac{5X5 X 5^n X5 + 2X5 X 5 x 5^n}{5X 5 X 5^n X3 + 5X 5 X 5^n X 2}$$
$$= \frac{5X5 X 5^n (2+1)}{5X 5 X 5^n (3+2)} = \frac{(2+1)}{(3+2)} = \frac{3}{5}$$

- 5. Express :
 - a) 729 As A Power Of 3 b) 128 as power of 2 c) 343 as a power of 7
 - a) We have 729 = 3 x3x 3x 3x3x3 = 36

Here, base = 3 and exponent = 6, as 3 repeated 6 times.

b) We have, $128 = 2x^2x^2x 2x^2x^2x^2 = 2^7$

3	128
3	64
3	32
3	16
3	8
3	4
2	2
	1

Here, base = 2 and exponent = 7, as 2 repeated 7 times. c) 343 as a power of 7

We have, $343 = 7x7x7 = 7^3$

7	343
7	49
7	7
	1

Here, base = 7 and exponent = 3, since 7 as 3 times.

III. Short Answer Questions

- 1. Simplify and write in exponential form.
- i) 7 ¹³ \div 7 ¹⁰ ii) (7 ⁵⁰)²
- i) As we know $a^m \div a^{m=}a^{m-n}$
- \therefore 7 ¹³ \div 7 ¹⁰ = 7 ¹³ ¹⁰ = 7 ³
- ii) We have $(7^{50})^{2} = 7^{50x^{2}} = 7^{100}$

[As we know $(a^m)^{n=}a^{mn}$

tion School

2. Compare the numbers:

2.7 x 10¹²; 1.5 x 10⁸ Since 2.7 x $10^{12} = \frac{27}{10}$ x 10¹² = 27 x 10¹²⁻¹ = 27 x 10¹¹ Also 1.5 x 10⁸ = $\frac{15}{10}$ x 10⁸ = 15 x 10⁸⁻¹ = 15 x 10⁷ = 27,00,00,00,00,000 = 15,00,00,000 Since 27,00,00,00,00,000 > 15,00,00,000 $\therefore 2.7 \times 10^{12} > 1.5 \times 10^{8}$ 3. Express in exponential notation i) 3,125 ii) 512 i) 5 3125 5 625 5 125 5 25 5 5 We have $3125 = 5 \times 5 \times 5 \times 5 \times 5 = 5^5$ ii) 512 2 512 2 256 2 128 $\begin{array}{c}
2 & 120 \\
2 & 64 \\
2 & 32 \\
2 & 16 \\
2 & 8 \\
2 & 4 \\
\hline
1 & 2 \\
\end{array}$ 2 2 tion School

5. Express the following as a product of prime factors only in exponential form.

i) 270 ii) 729 x 64

i) We have, 270 = 2x 3 x3x3 x5= 2 x 3³ x 5

ii) We have

 $729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3 = 3^{6}$

 \therefore 729 x 64 = 3⁶ x 2⁶

- 6. Express the number appearing in following statements in standard form.
 - i) The distance between Earth and Moon is 38,40,00,000 m.
 - ii) The population of India was about 1,02,70,00,000 in March, 2001.
 - i) \therefore 38,40,00,000 = 3.84000000 x 10⁸
 - $= 3.84 \times 10^8$
 - ...The distance between Earth and Moon is 3.84 x 10^8 m
 - *ii*) $1,02,70,00,000 = 1.027000000 \times 10^{9}$

∴ The population of India was 1.027 x 10⁹ in March 2001.

1. Find the value of n if :

$$\frac{9^{n} \times 3^{2} \times 3^{n} - (27)^{n}}{(3^{3})^{5} \times 2^{3}} = \frac{1}{27}$$

$$\Rightarrow \frac{(3x3)^{n} \times 3^{2} \times 3^{n} - (3x \cdot 3x3)^{n}}{3^{15} \times 2^{3}} = \frac{1}{3x}$$

$$\Rightarrow \frac{(3x)^{n} \times 3^{n+2} - (3^{3})^{n}}{3^{15} \times 2^{3}} = \frac{1}{3^{3}}$$

$$\Rightarrow \frac{3^{2n} \times 3^{n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{2n+n+2} - 3^{3n}}{3^{15} \times 2^{3}} = 3^{-3}$$

$$\Rightarrow \frac{3^{3n-15} \times 2^{n}}{2^{3}} = 3^{-3}$$

$$\Rightarrow 3^{3n-15} \times \frac{8}{8} = 3^{-3}$$

$$\Rightarrow As base are same on both sides, so$$

$$3n-15 = -3$$

$$\Rightarrow 3n = -3 + 15$$

$$\Rightarrow 3n = 12$$
thus, $n = \frac{12}{3} = 4$.

2. By what number should $(-15)^{-1}$ be divided so that the quotient is $(-5)^{-1}$

Let the number $(-15)^{-1}$ should be divided by x to get the quotient $(-5)^{-1}$

$$\Rightarrow \frac{1}{-15} + x = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} \times \frac{1}{x} = \frac{1}{-5}$$

$$\Rightarrow \frac{1}{-15x} = \frac{1}{-5}$$

$$\Rightarrow 15x \times 1 = .5 \times 1$$

$$\Rightarrow 15x = .5$$

$$\Rightarrow x = .\frac{1}{-3}$$

$$\Rightarrow x = .\frac{1}{-3}$$
3. Simplify the following:
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ 6^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
a) $(6^{-1} - 8^{-1})^{-1} + (2^{-1} - 3^{-1})^{-1}$
b) $\left\{ 6^{-1} + (\frac{3}{2})^{-1} \right\}^{-1}$
c) $\left\{ \frac{1}{2} - \frac{1}{3} \right\}^{-1}$
c) $\left\{ \frac{1}{3} - \frac{1}{3} \right\}^{-1}$
c)

4. $a. \frac{12^4 \times 9^3 \times 4}{6^3 \times 8^2 \times 27}$ b. $2^3 \times a^3 \times 5a^4$ hic $a. \ \frac{12^4 X 9^3 X 4}{6^3 X 8^2 X 27} = \frac{(3 X 2^2)^4 X (3^2)^3 X 2^2}{(2 X 3)^3 X (2^3)^2 X 3^3}$ $3^4 X 2^8 X 3^6 X 2^2$ 2³ X 3³ X 2⁶ X 3³ $=\frac{2^{8+2} X 3^{6+4}}{2^{6+3} X 3^{3+3}} = 2^{10-9} X 3^{10-6}$ $= 2 \times 3^4 = 2 \times 81 = 162.$ b. $2^3 \times a^3 \times 5a^4$ $= 8 \times a^3 \times 5 \times a^4$ = 40 x a ³⁺⁴ $= 40 \times a^7$ = 40a⁷ 5. If $(25)^{n-1} + 100 = 5^{(2n-1)}$, find the value of n $\Rightarrow (5^2)^{n-1} + 100 = 5^{(2n-1)}$ $\Rightarrow 5^{2n-2} + 100 = 5^{2n-1}$ $\Rightarrow 5^{2n-2} - 5^{2n-1} = -100$ $\Rightarrow 5^{2n-1} - 5^{2n-2} = 100$ \Rightarrow 5²ⁿ⁻² x (5-1) =100 \Rightarrow 5²ⁿ⁻² x 4 =100 $\Rightarrow 5^{2n-2} = \frac{100}{4} = 25$ Thus, $5^{2n-2} = 5^2$ As base is same on both sides ∴ 2n-2 = 2 $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 2 + 2$ $\Rightarrow 2n = 4$ Cest Generation School \implies n = $\frac{4}{2}$ = 2.

6. Write each of the following in power notation:

7. Find the value of n, where n is an integer and 2^{n-5}

$$x6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times 6^{2n-4} = \frac{1}{12^{4} x2}$$

$$\Rightarrow 2^{n-5} \times (3 \times 2)^{2n-4} \times 2^{2n-4} = \frac{1}{(2 \times 2 \times 3)^{4} \times 2}$$

$$\Rightarrow 2^{n-5} \times 3^{2n-4} \times 2^{2n-4} = \frac{1}{2^{4} \times 2^{4} \times 3^{4} \times 2}$$

$$\Rightarrow 2(^{n-5)} \times 2n-4 \times 3^{2n-4} = \frac{1}{2^{4+4+1} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = \frac{1}{2^{9} \times 3^{4}}$$

$$\Rightarrow 2^{3n-9} \times 3^{2n-4} = 2^{-9} \times 3^{-4}$$

[∵(a x b)^m = a^m x b^m]

 $[::a^m \times a^n = a^{m+n}]$

 $[\because a^m \times a^n = a^{m+n}]$

$$\left[::\frac{1}{a^m}=a^{-m}\right]$$

8. Find x such, that $\left(\frac{1}{5}\right)^{5} \times \left(\frac{1}{5}\right)^{19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{5+19} = \left(\frac{1}{5}\right)^{8x}$ $\Rightarrow \left(\frac{1}{5}\right)^{24} = \left(\frac{1}{5}\right)^{8x}$

When bases are equal, then by equating their exponents, we get

$$8x = 24$$

$$x = \frac{24}{8} = 3.$$
Other School

3. The speed of light in vacuum is 3 x 108 m/s. Sunlight takes about 8 minutes to reach the earth. Express distance of Sun from Earth in standards form.

Speed of light in vacuum is 3 x 108 m/s

Time taken by sunlight to reach the Earth = 8 minutes

Converting in seconds = 8×60 seconds

Let the distance of sun from Earth be x metre

As we know,

Speed = $\frac{Distance}{Time}$

 $3 \times 10^8 = \frac{x}{8 \times 60}$

- $x = 3 \times 10^8 \times 48 \times 10$ [By cross multiplication]
- $x = 144 \times 10^8 = 144 \times 10^{11}$ metres.
- \therefore The distance of Sun from Earth is 1.44 x 10 ¹¹m.
- 4. Bacteria can divide in every 20 minutes. So, 1 bacterium can multiply to 2 in 20 minutes, 4 in 40 minutes, and so on. How many bacteria will there be in 6 hours?

Write your answer using exponents, and then evaluate.

Bacteria can divide in every 20 minutes.

So I bacterium multiplied to 2 in every 20 minutes and 4 in 40 minutes.

Converting 6 hours in minutes :

1 hour = 60 minutes

6 hours = 60 x 6 = 360 minutes.

In every 20 minutes is multiplied by 2,

So 360 minutes it is $\frac{360}{20} = 18$ times.

 \Rightarrow In 20 minutes 1 bacteria is multiplied by 2 = 1 x 2

In 40 minutes 2 bacteria is multiplied by $2 = 2 \times 2 = 2^2 = 4$.

In 60 minutes 4 bacteria is multiplied by $2 = 4 \times 2 = 2^3 = 8$.

In 360 minutes multiplied by 2 bacteria = 2^{18}

Hence, In 6 hours, 2¹⁸ bacteria well be there.

Next Generation School